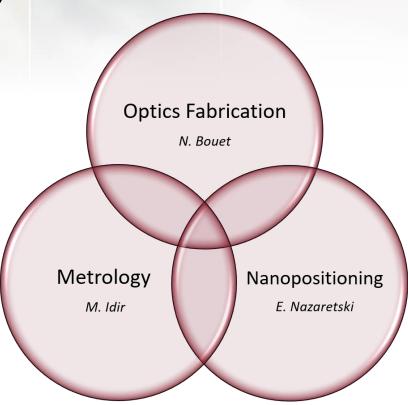
Deposition Lab / Optics Fabrication

Nathalie Bouet

Beamline Engineering Meeting – March 26th, 2019



Optics Fabrication group

Juan Zhou (scientific associate)

2010 BNL Engineering Award

2015 R&D 100 award in collab with LBNL, ANL and Abeam Technologies

2016 R&D 100 award in collab with NSLS-II nanopositioning team and HXN beamline

2016 Microscopy Today innovation award in collab with NSLS-II nanopositioning team and HXN

US patents 9,153,453 and 9,875,821

Collaborators

Optics and Metrology group

Juan Zhou

Matthew Vescovi

Abram Ledbetter

Evgeni Nazaretski

Weihe Xu

Wei Xu

Dennis Kuhne

Mourad Idir

Lei Huang

Tianyi Wang

HXN beamline – MLL R&D

Yong Chu

Hanfei Yan

Xiaojing Huang

Many NSLS-II scientists ...

Elio Vescovo

Kon Kaznatcheev

Claudio Mazzoli

Eric Dooryhee

Sanjit Ghose

Ignace Jarrige

Valentina Bisogni

Joe Dvorak

Pete Siddons

Lutz Wiegart

Andrei Fluerasu

Oleg Chubar...

APS-ANL

Raymond Conley Albert Macrander

Jorg Maser

Michael Wojcik

Deming Shu

ALS-LBNL

Valeriy V. Yashchuk

Fraunhofer IWS Dresden

Adam Kubec

Accustrata, Inc.

George Atanasoff Christopher Metting Hasso Von Bredow

Optics fabrication at NSLS-II

Using either additive or subtractive processes

Material deposition

Material removal

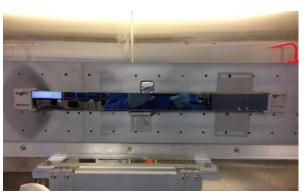
> Expertise in plasma and chemistry based techniques

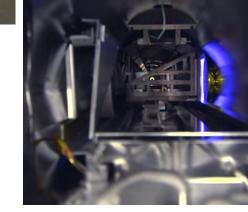
Plasma Chemistry

Sputtering deposition lon beam milling

Reactive sputtering Reactive Ion etching

Wet etching Metal stripping

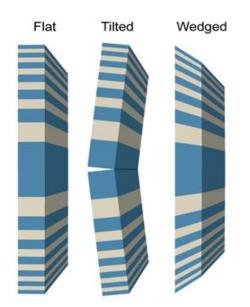




Deposition Lab

9 DC Sputtering guns
Linear travel
Sequential cathodes activation
Reactive sputtering possible
Ion gun – capable of handling gas mixtures
Base pressure ~ 8 x 10-8Torr

Characterization tools and etching lab


Multilayer Laue lenses R&D

High resolution nanofocusing optics for hard XR

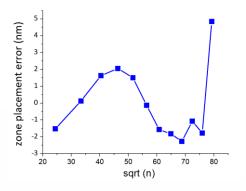
MLL propose a solution to **overcome the aspect ratio challenge of ZP for hard X-ray** by creating the zone structure

Fabricated via **deposition of depth graded multilayer** obeying the ZP law **and further sectioning to the desired section depth**

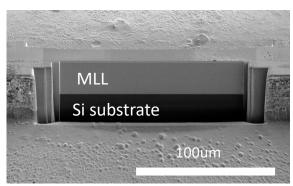
- Zone structure created via deposition of depth graded multilayer obeying the ZP law
 - → several thousands of layers to be deposited
 - → total film thickness of tens of microns
- Based on thin film deposition techniques capabilities
 - → 1nm zone/layer thickness feasible
- ➤ Virtually no limit on aspect ratio (thinnest zone width versus section depth) → Usable for hard X-ray nanofocusing

Multilayer Laue lenses (MLLs)

Full optics fabrication, metrology & testing in house

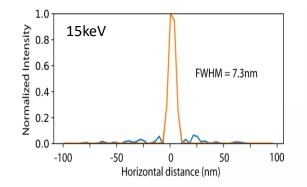

Deposition

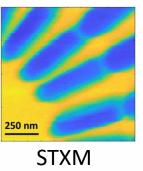
Thousands of layers ~ 5000-8000 ML up to 100um thick


Flat & Wedged geometries

Accuracy of +/- 5nm over 43um

Sectioning

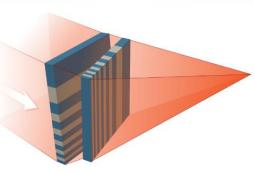

via Manual polishing + FIB or RIE +FIB
Section depth typically 5 to 15um for 10-20keV

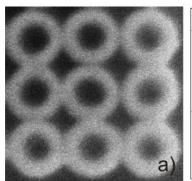


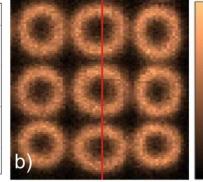
US patent 9,153,453

Optics testing

at HXN beamline




Optics integrated at Hard Xray Nanoprobe (HXN) beamline for users experiments


160

2D focusing achieved by using 2 crossed MLL

Pt circles are 80 nm diameter and 20 nm line width

SEM

XRF (Pt L-edge)
12keV
Exposure time 0.2s
5nm per pixel

Nazaretski et al., AIP Conf. Proc. 1764 (2016)

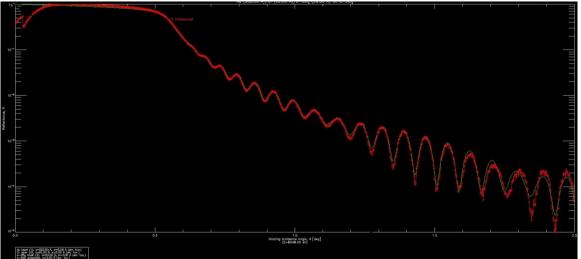
13 x 13 nm² point focus offered to NSLS-II users at HXN using a 43um and a 53um MLLs

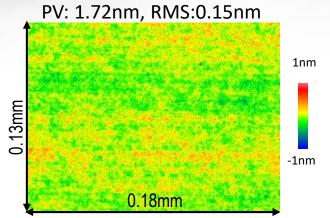
Beamline support - Multilayers and thin films coatings

multilayers

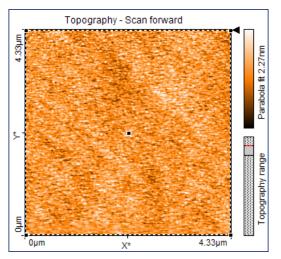
thin films

multi-stripes

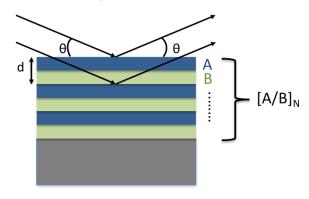



Example: gold coatings

Coatings of different substrates from 10mm to 100mm Thicknesses from few nm to 1 micron for diverse applications



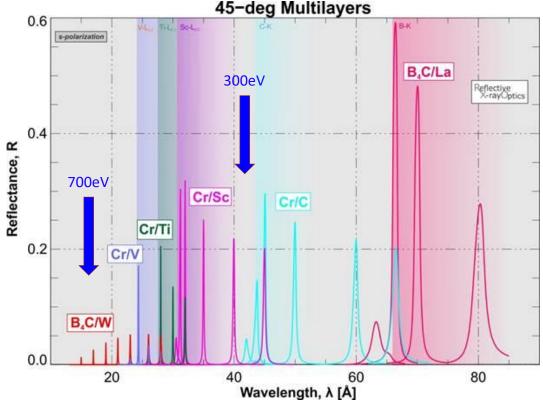
after sys error and best plane subtraction, ; ZYGO NewView x20 objective, x2 zoom lens


AFM roughness (rms) =0.3nm

Multilayers coatings

Example of multilayers grown for NSLS-II ESM and SIX beamlines

Multilayer structure


Bragg peaks: m λ = 2 d $\sqrt{n^2 - cos^2\theta}$

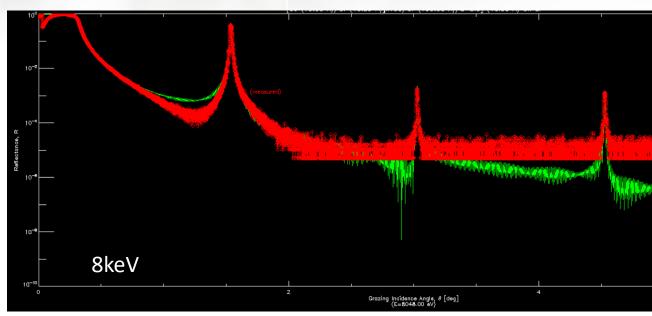
Bandwidth: ΔE/E ~ 1/N

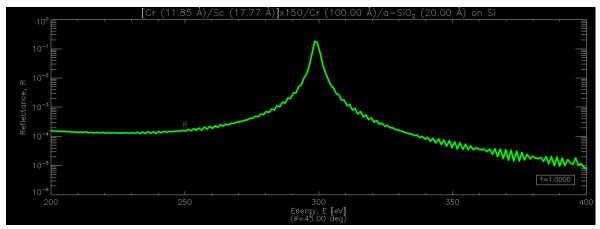
Multilayers used as monochromators to characterize their undulators and help with the alignment of beamline elements.

DiagOn reference:

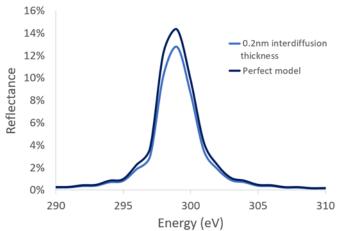
K. Desjardins, AIP Conf. Proc. 879, 1101 (2007)

Source: http://www.rxollc.com




300eV multilayers – 45° incidence

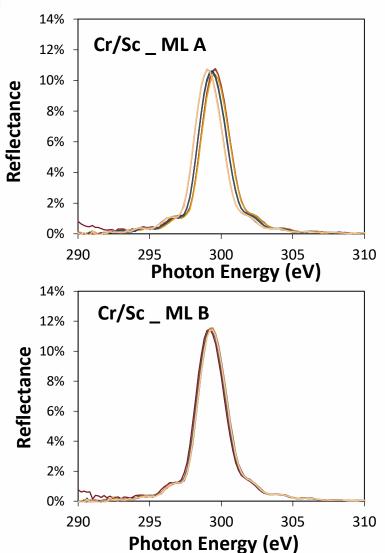
Cr/Sc 150 bilayers, d=2.96nm Si substrate



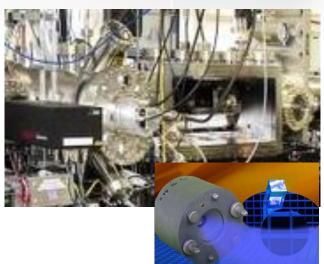
Optics testing of the multilayers @ 45°

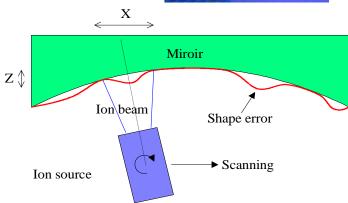
incidence

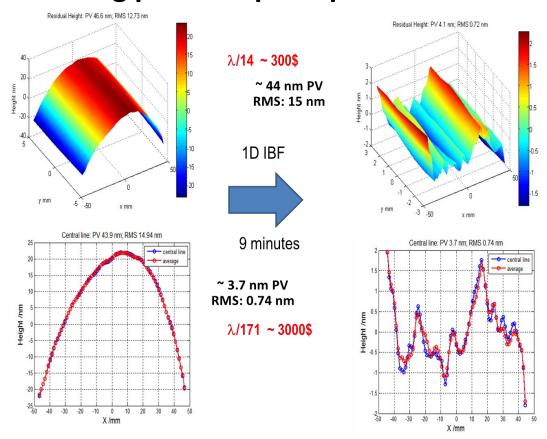
Cr/Sc 150 bilayers d=2.96nm Si substrate


Simulations using CXRO website

BROOKHAVEN NATIONAL LABORATORY


MLs tested at ALS (BL 6.3.2)


at 45 deg incidence by E. Gullikson

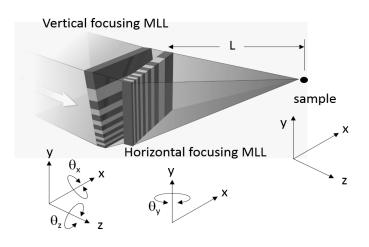

Ion beam figuring - collab with Metrology

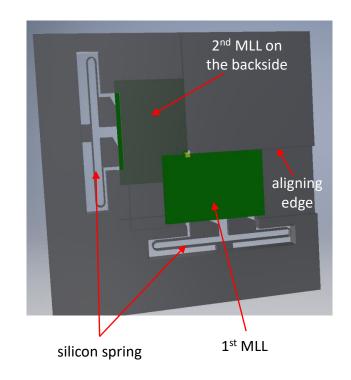
Plane sample #1

Promising proof-of-principle first results

Review of Scientific Instruments 86, 105120 (2015)

- J. Synchrotron Rad. 23, 182 (2016)
- J. Synchrotron Rad. 23, 1087 (2016)

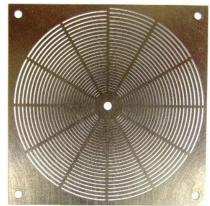



BROOKHAVEN NATIONAL LABORATORY

Bonded MLLs – collab with Nanopositioning

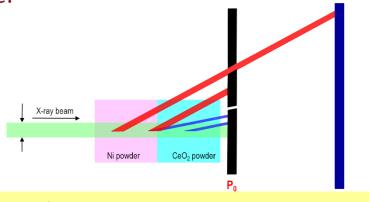
Monolithic MLL as an alternative to complex alignment procedure

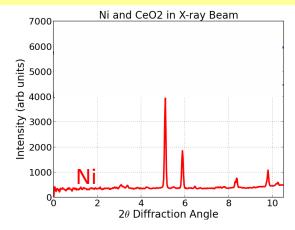
- Alignment of two linear MLL optics is complex
- Stringent requirements for accuracy of alignment and stability of the microscope



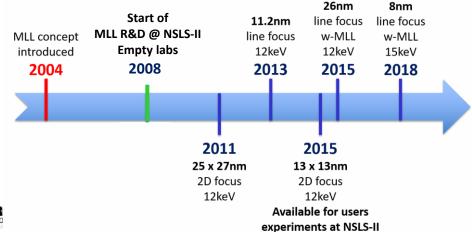
Conical Slit fabrication for Probing Buried Volumes for Dynamic Measurements of Heterogeneous Materials – collab with XPD beamline

Goal: Implementation of a conical/spiral slit which will allow diffracted rays to be transmitted if and only if they originate from a three dimensional gauge volume, defined by the beam size and slit opening size.


US patent 9,875,821


Fabrication using laser cutting and reactive ion etching → Fabrication methods allowing high accuracy

BROOKHAVEN NATIONAL LABORATORY



Measure of integrated intensity as the slit gauge volume is translated from a Ni powder to a CeO₂ powder

Summary

- Capabilities of deposition of high quality films at NSLS-II
 - Simple coatings (Au, Pt, Rh...)
 - Multilayers
 - > MLLs
- Very successful R&D on MLL optics with a lot of developments in the past years leading to:
 - Growth of high quality multilayers
 - Demonstration that large aperture MLLs optics are possible
 - High spatial resolution and high efficiency can be achieved with wedged MLLs

Summary

- Application of our knowledge on fabrication processes to other optical components and new techniques development
 - ➤ Bonded MLLs
 - > Ion Beam figuring
 - Spider web slits
 - Growth monitoring instrumentation developments ...

